Branch & Bound Algorithm with Partial
Prediction For Use with Recursive and
Non-Recursive Criterion Forms

Petr Somol, Pavel Pudil, and Jiii Grim

Dept. of Pattern Recognition, Inst. of Information Theory and Automation,
Academy of Sciences of the Czech Republic, 182 08 Prague 8, Czech Republic
e-mail: {somol, pudil, grim}@Qutia.cas.cz

Abstract. We introduce a novel algorithm for optimal feature selection. As op-
posed to our recent Fast Branch € Bound (FBB) algorithm [5] the new algorithm
is well suitable for use with recursive criterion forms. Even if the new algorithm
does not operate as effectively as the FBB algorithm, it is able to find the optimum
significantly faster than any other Branch & Bound [1,3] algorithm.

Keywords: subset search, feature selection, search tree, recursive criteria, optimal
search, subset selection.

1 Introduction

The problem of optimal feature selection (or more generally of subset selec-
tion) is difficult especially because of its time complexity. Any known optimal
search algorithm has an exponential nature. The only alternative to the ex-
haustive search is the Branch & Bound (BB) algorithm [1,3] and ancestor
algorithms based on a similar principle. Any BB algorithm requires the cri-
terion function fulfilling the monotonicity condition. Let x; be the set of

features obtained by removing j features yi,ys2,---,y; from the set ¥ of all
D features, i.e.

Xi = 1{&il&i € Y, 1 <i < D& # yr, Vk} (1)
The monotonicity condition assumes that for feature subsets X1, X2, -+, Xj,
where

X1 DX2 D - DXj
the criterion function J fulfills

J(x1) 2 J(X2) 2 -+ 2 J(X;)- (2)

By a straightforward application of this property many feature subset evalu-
ations may be omitted.

Before discussing the new algorithm, let us summarize the BB principle
briefly. The algorithm constructs a search tree where the root represents the
set of all D features and leaves represent target subsets of d features. While

2 Petr Somol et al.

(1,2,3,4,5) k=0

k=2

k=3
“4,5) (3,5 (3.4 (25 (24) (23) (1,5) (1,4) (1,3) (1,2)
Fig. 1. Example of “branch & bound” problem solution, where d = 2 features are

to be selected from the set of D = 5 features. The dashed arrows illustrate the way
of tracking the search tree.

tracking the tree down to leaves the algorithm removes successively single
features from the current set of “candidates” (xx in the k-th level). The
algorithm keeps the information about both the till-now best subset X and
the criterion value X* it yields (we denote this value the bound). Anytime the
criterion value in some internal node is found to be lower than the current
bound, due to the condition (2) the whole sub-tree may be cut-off and many
computations may be omitted. The course of the BB algorithm is illustrated
on Fig. 1. For details see [1,3,2].

Several improvements of this scheme are known: the “Improved” BB al-
gorithm [3] utilizes a heuristic for ordering tree branches so as to find the
optimum faster and therefore to allow more sub-tree cut-offs. The “Fast” BB
algorithm [5] introduces a prediction mechanism being able to predict impos-
sibility of cutting-off a sub-tree and therefore to save a significant number of
computations.

2 Drawbacks of the Traditional Branch & Bound
Algorithm

When compared to the exhaustive search, every BB algorithm requires ad-
ditional computations. Not only the target subsets of d features yp—_q, but
also their supersets Yp_q—j, j =1, 2,---, D — d have to be evaluated.

The BB principle does not guarantee that enough sub-trees will be cut-off
to keep the total number of criterion computations lower than their number
in exhaustive search. The worst theoretical case would arise when we defined
a criterion function J(xr) = |xx| = D — k; the criterion function would be
computed not only in every leaf (the same number of computations as in
exhaustive search), but additionally also in every other node inside the tree.

Branch & Bound Algorithm with Partial Prediction 3

Weak BB performance in certain situations may result from simple facts
that nearer to the root: a) criterion value computation is usually slower (eval-
uated feature subsets are larger), b) sub-tree cut-offs are less frequent nearer
the root (higher criterion values may be expected for larger subsets, which
reduces the chance of the criterion value to remain under the bound, which
is updated in leaves). The BB algorithm usually spends most of time by te-
dious, but less promising evaluation of tree nodes near the root. This effect
is to be expected especially for d < D. In case of the “Improved” BB algo-
rithm a significant number of additional computations is needed for ordering
internal search tree node descendants. The advantage following from these
computations may become questionable, because a slightly better heuristic
organization of the search tree is often outweighted by the additional com-
putational time.

A very effective way of resolving BB disadvantages offers the FBB algo-
rithm, which is able to replace a large number of computations by means of
prediction. Although the FBB algorithm requires usually several times less
criterion computations than any other BB algorithm, its suitability for many
practical problems is limited if the recursive criterion forms are to be used.
To resolve this limitation we define a new, more universal algorithm.

3 Improving the “Improved” Algorithm

Let’s focus on the “Improved” BB algorithm heuristics for ordering the inter-
nal tree node descendants. Let the criterion value decrease be the difference
between the current criterion value and the value after the removal of a par-
ticular feature. Let bad features be those features, whose removal from the
current candidate set causes only a slight criterion value decrease. Let good
features be those ones, whose removal from the current candidate set causes a
significant criterion value decrease. (At this stage there is no need to quantify
what a slight or significant decrease is).

In this explanation we assume that the BB algorithm constructs a search
tree with a given topology (e.g. the “minimum solution tree” described by
Yu and Yuan [4]). It is apparent that given the search tree topology, different
feature assignments to the tree edges may be defined. The “Improved” algo-
rithm aims to position bad features to the right, less dense part of the tree
and good features to its left, more dense part . Based on such ordering we may
expect faster bound increase, because preferred removal of bad features should
keep the candidate criterion value higher. Consequently, removing good fea-
tures from later candidate sets in the left, dense part of the tree gives better
chance to decrease the criterion value under the bound and therefore to allow
more effective sub-tree cut-offs.

The “Improved” BB algorithm operates approximately twice as fast as
the “Basic” BB algorithm in most practical problems. However, the ordering
heuristic requires a significant number of additional computations. Let’s il-

4 Petr Somol et al.

"Branch & Bound With Partial Prediction”

\ INITIALIZE \

l<
&
CREATE an ORDERED LIST
of current node descendants as follows:

for every feature being potentially usable
for consecutive tree level construction
PREDICT the criterion value

v

sort the features descending according to
predicted criterion values

v

take the required number of features
yielding lowest criterion values (preserve
their ordering); for these features only
COMPUTE real criterion values

backtrack to
previous level

SELECT NEXT
RIGHTMOST NODE

v

criterion
value for current
node < BOUND

No go forward to
next level

| UPDATE BOUND |
|

Fig. 2. Simplified diagram of the new algorithm

lustrate this drawback on Fig. 1 — when constructing the first level, i.e. when
specifying the ordering of root descendants, the “Improved” algorithm eval-
uates the criterion value decrease for every available feature (all 5 features),
although only 3 features are to be assigned to first level edges.

Our intention is to find the same (or very similar) ordering of tree nodes
as given by means of the “Improved” BB algorithm with reduced number of

Branch & Bound Algorithm with Partial Prediction 5

criterion evaluations. To achieve this goal we utilize the prediction mecha-
nism as defined for purposes of the FBB algorithm. The new algorithm will
construct the consecutive tree levels in several phases. First the criterion
value decrease will be predicted for every feature being currently available
for the tree construction. The features will be sorted descending according to
the predicted criterion value decreases. Then, the required number of features
(beginning from the feature with highest predicted criterion value decrease)
will be taken to form the consecutive tree level.

Different features appear in different search tree construction stages, there-
fore we need to collect the prediction information separately for every feature.
First we introduce a vector of feature contributions to criterion value for stor-
ing the individual information about average criterion value decrease caused
by removing single features from current “candidate” subsets. Next we in-
troduce a counter vector recording the number of criterion value decrease
evaluations for every individual feature.

4 Branch & Bound with Partial Prediction (BBPP)

Our algorithm description is based on the notion from book [2]. We will use
following symbols:
constants:

D — number of all features,

d — required number of selected features,
other symbols:

Y - set of all D features,

J(.) — criterion function,

k — tree level (k = 0 denotes the root),

Xt ={& 1 =1,2,---,D — k} — current “candidate” feature subset in
k-th tree level,

qr — number of current node descendants (in consecutive tree level),

Ok ={Qk1,Qk2,---,Qrg,} — ordered set of features assigned to edges
leading to the current node descendants (note that “candidate” subsets Ygt1
corresponding to the current node descendants are fully determined by fea-
tures Qi fori=1,--- qx),

Ji = [k, T2, kg]t — vector of criterion values corresponding to
the current node descendants in consecutive tree level (Ji; = J(xx \ {@k.i})
for i = 17"'7qk)7

U ={y; | j=1,2,---,r} — control set of r features being currently
available for search-tree construction, i.e. for building consecutive descendant
vector Qy; the ¥ set serves for maintaining the search tree topology,

X ={x;|j=1,2,---,d} — current best subset of d features

X* — current bound (criterion value corresponding to X),

A = [Al,AQ,...,AD]T — wvector of feature contributions to criterion
value,

6 Petr Somol et al.

S = [S1,52,...,8p]T — counter vector (together with A serves for pre-
diction)
Remark: it is necessary to store all values g;, ordered sets Q; and vectors J;
for j =0,-- -,k during the algorithm course to allow backtracking.

The algorithm is to be initialized as follows:
k = 0 (starting in the root),
Xo = Y7
U=Y,r=D
X* — lowest possible value (computer dependent)
Si=0foralli=1,---,D.

The BBPP Algorithm
Whenever the algorithm removes some feature y; from the current “candi-
date” subset and computes the corresponding real criterion value J(xx \{v:})
in k-th tree level, use the difference J(xx) — J(xx \ {y:}) for updating the
prediction information. Let

A = Ayi Sy, + J(Xk) — J(Xx \ {yz})

and let
Sy =Sy +1 (4)

STEP 1: Select descendants of the current node to form the consecutive tree
level: first set their number to ¢ = r—(D—d—k—1). Construct an ordered set
Q. and vector Jy specifying the current node descendants as follows: sort all
features v; € ¥,j = 1,---,r descending according to their Ay, ,j =1,---,r
values, i.e.

Ad}jl 2 Aﬂ}jl 22 Ay,

and choose successively first g features among them, i.e. let

Qr,i =y, for i =1, qx

Jki =J(xe \{p;.}) fori=1,---,q
To avoid future duplicate testing, features v;, cannot be used for construc-
tion of consecutive tree levels, so let ¥ = ¥\ Qf and r = r — gy,

STEP 2: Test the right-most descendant node (connected by the Qy, 4, -edge):
if g = 0, all descendants were tested, go to Step 4 (backtracking). If
Jr,qe < X*, then go to Step 3. Else let Xx+1 = Xk \{Qk,q. }- fk+1=D—d,
then you have reached a leaf, go to Step 5. Otherwise go to the consecutive
level: let kK =k + 1 and go to Step 1.

STEP 3: Descendant node connected by the Qy, 4, -edge (and its possible sub-
tree) may be cut-off: return feature Qy 4, to the set of features available for

Branch & Bound Algorithm with Partial Prediction 7

tree construction, i.e. let U =W U {Qp g} and r =7+ 1, Qp = O \ {Qr g }
and g = g — 1 and continue with its left neighbor; go to Step 2.

STEP 4: Backtracking: Let k = k—1. If Kk = —1, then the complete tree had
been searched through; stop the algorithm. Otherwise return feature Qy,q,
to the set of “candidates”: let X = Xr+1 U {Qr,q, } and go to Step 3.

STEP 5: Actualize the bound value: Let X* = Ji 4, . Store the currently best
feature subset X = 41 and go to Step 2.

Remark: In Step 1 for k = 0 the term J_; ,_, denotes the criterion value on
a set of all features, J(Y').

5 New Algorithm Properties

The algorithm may be expected to be most effective, if the individual feature
contribution to the criterion value does not change strongly in relation to
different subsets. Practical tests on real data fulfilled this property in most
of cases. Moreover, the BBPP algorithm proved to be effective even in cases,
when due to difficult statistical dependencies individual feature contributions
failed to remain stable.

When compared to the FBB algorithm, the BBPP may be expected to
be more robust. A potential failure of the prediction mechanism would have
only indirect influence on the overall algorithm performance. A potentially
wrong ordering of internal tree nodes (i.e. assigning of features to edges)
would eventually decrease the efficiency of sub-tree cut-offs, but on the other
hand the basic advantage over the “Improved BB” algorithm — reducing the
number of additional computations — remains preserved.

When compared to both “Basic” and “Improved” algorithms the BBPP
always spends some additional time for maintaining the prediction mecha-
nism. However, this time proved not to be important in case of non-recursive
criterion forms, while in case of faster recursive criterion forms it still proved
to be short enough to ensure overall algorithm speedup. Moreover, especially
for use with recursive criterion forms attempts to define even simpler predic-
tion mechanisms to save computational time (e.g. to utilize the last known
feature contribution to criterion value only) have been made with promising
results.

Remark: To ensure good results we recommend to evaluate the individual
feature contributions to criterion value once for all features in the initial
algorithm phase. This will ensure a correct start of the prediction mechanism.
Moreover, the first search tree level may then be constructed in the same
way as in the “Improved” BB, what may prove to be advantageous for later
algorithm phases.

8 Petr Somol et al.

6 Experiments

The algorithms were tested on a number of different data sets. Here we
present representative results computed on 30-dimensional mammogram data
(2 classes — 357 benign and 212 malignant samples) obtained from Wisconsin
Diagnostic Breast Center via the UCI repository - ftp.ics.uci.edu. We used
both the recursive and non-recursive Bhattacharyya distance as the criterion
function. Performance of different methods is illustrated on Fig. 3 and Fig. 4
by a graph of total computational time and a graph of criterion evaluation
numbers. We did not include the graph of criterion values, because all the
methods yield the same optimum values.

T T T T T T T T
12000 . . exhaustive search / “ b
*—x BB basic | |
| »—BBimproved | A i]
9600 &-4 BB part. pred. | !
N —= FBB (1.1,5) 41
§ 7200 | .
@2
£
= 4800 F ,
2400 i
\\
- A
0 e T
1 3 7 9 11 13 15 17 19 21 23 25 27 29
Number of selected features (d)
6T T T T T T T T T T T T
2 1x107- + » exhaustive search “
% «—x BB basic ! .)
3 8 x10°} * BB improved | 1 Fig.3. Example: Opti-
b4 I
5 - Egé’;ﬁ';red' | mal subset search methods
[} 1, .
S 6x10°- ! | performance when maxi-
g mizing the non-recursive
= 4 %105 | Bhattacharyya distance on
2 \\ 30-dimensional data (Wis-
o . . .
% 2 x10°. “ | consin Diagnostic Breast
Q
E A Center). Results computed
ol ‘ .Y on a Pentium I1-350 MHz

13 5 7 9 1113 15 17 19 21 23 25 27 29 computer.

We compare all the results especially with the results of the “Improved”
BB algorithm [3,2], because this algorithm is generally accepted to be the
most effective optimal subset search strategy. In case of non-recursive cri-
terion functions we compare the new algorithm also with our recent FBB
algorithm. Note that in case of non-recursive criterion computations we im-
plemented all BB algorithms so as they construct the “minimum solution
tree” [4].

Although the FBB algorithm usually finds the optimum after the smallest
number of computations, its principle prevents it to be used with recursive

Branch & Bound Algorithm with Partial Prediction 9

T T T T
*—x BB basic

»— BB improved
96 | &-4 BB part. pred.

120

72 F

48 +

Time (sec.)

24

13 5 7 9 11 13 15 17 19 21 23 25 27 29
Number of selected features (d)

6L
1.8x10 *—x BB basic

»—= BB improved
&-4 BB part. pred.

Fig.4. Example: Opti-
mal subset search methods
performance when maxi-
mizing the recursive Bhat-
tacharyya distance on 30-
dimensional data (Wiscon-
sin Diagnostic Breast Cen-
. ! ter). Results computed on
o e Eees® Syw.wwy a Pentium I1-350 MHz
13 5 7 9 1 13 156 17 19 21 23 25 27 29 computer.

1.44 x10%+
1.08 x10%+ :
7.2x10°F 1

3.6 x10°F AT .

Number of real criterion computations

criterion functions. The graphs on Fig. 3 and Fig. 4 illustrate that the BBPP
operates faster than the “Improved” BB when used both with non-recursive
or recursive criterion forms. According to expectations, being used with re-
cursive criterion forms the new algorithm brings a less significant speedup;
the computational complexity of recursive criterion forms is usually signif-
icantly lower than in non-recursive case, although the computational time
spend by the prediction mechanism remains the same.

Remark: When used with recursive criterion form, no BB algorithm may
utilize the “minimum solution tree” [4] due to the necessity to preserve crite-
rion value computation sequence. The minimum solution tree assumes short-
ening of straight paths to leaves, what breaks the criterion computation se-
quence. Because of this reason numbers of computations differ in recursive
and non-recursive case.

Both for the FBB and BBPP a slight shift of their graphs to the right may
be observed when compared to the “Improved” BB algorithm. The prediction
mechanism based algorithm acceleration relates to the number of criterion
evaluation savings in internal search tree nodes, therefore with decreasing d
the search tree depth increases and allows more effective operation of the
prediction mechanism.

The majority of experiments produced results similar to those on Fig. 3
and Fig. 4. In one isolated worst case the speed of the BBPP used with
recursive criterion form remained comparable to the speed of “Improved” BB.

10 Petr Somol et al.

Theoretically we can not exclude the prediction mechanism failure — if the
individual feature contributions to criterion value were unstable, i.e. changed
too often and too strongly, the BBPP operation could become comparable
with the “Basic BB” algorithm. However, we have not met such situation in
our experiments.

7 Conclusion

We defined a new algorithm for optimal subset search. Its prediction mecha-
nism allows significant time savings when compared to “Basic” or “Improved”
Branch & Bound algorithms [3]. The algorithm was experimentally proved
to be robust and well suitable for use with different criterion functions, both
in recursive and non-recursive form.

Acknowledgement: The work has been supported by the grants of Czech
Ministry of Education MSMT No.VS96063, ME187, CEZ:J18/98:311600001
and Academy of Sciences K1075601.

References

1. Narendra P. M., Fukunaga K. (1977) A branch and bound algorithm for feature
subset selection. IEEE Transactions on Computers, C-26, 917-922

2. Devijver P. A., Kittler J. (1982) Pattern Recognition: A Statistical Approach.
Prentice-Hall

3. Fukunaga K. (1990) Introduction to Statistical Pattern Recognition: 2nd edition.
Academic Press, Inc.

4. Yu B., Yuan B. (1993) A more efficient branch and bound algorithm for feature
selection. Pattern Recognition, 26, 883-889

5. Somol P., Pudil P., Ferri F. J., Kittler J. (2000) Fast Branch & Bound Algorithm
in Feature Selection. Proc 4th World Multiconference on Systemics, Cybernetics
and Informatics SCI 2000, Orlando, Florida, Vol VII, Part 1, 646-651

